Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Solid-state batteries are attractive energy storage systems as a result of their inherent safety, but their development hinges on advanced solid-state electrolytes (SSEs). Most SSEs remain largely confined to single-anion systems (e.g., sulfides, oxides, halides, and polymers). Through mixed-anion design strategy, we develop crystalline Li3Ta3O4Cl10(LTOC) and its derivatives with excellent ionic conductivities (up to 13.7 millisiemens per centimeter at 25°C) and electrochemical stability. The LTOC structure features mixed-anion spiral chains, consisting of corner-shared oxygen and terminal chlorine atoms, which induces continuous “tetrahedron-tetrahedron” Li-ion migration pathways with low energy barriers. Additionally, LTOC demonstrates holistic cathode compatibility, enabling solid-state batteries operation at 4.9 volts versus Li/Li+and low temperature, down to −50°C. These findings describe a promising class of superionic conductors for high-performance solid-state batteries.more » « less
-
Abstract Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaxMyCl6(M = La–Sm) with UCl3-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications.more » « less
-
Abstract PINTis a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new frequentist framework withinPINTto characterize the single-pulsar noise processes present in pulsar timing data sets. This framework enables parameter estimation for both uncorrelated and correlated noise processes, as well as model comparison between different timing and noise models in a computationally inexpensive way. We demonstrate the efficacy of the new framework by applying it to simulated data sets as well as a real data set of PSR B1855+09. We also describe the new features implemented inPINTsince it was first described in the literature.more » « less
-
Abstract Pulsar timing array experiments have recently uncovered evidence for a nanohertz gravitational wave background by precisely timing an ensemble of millisecond pulsars. The next significant milestones for these experiments include characterizing the detected background with greater precision, identifying its source(s), and detecting continuous gravitational waves from individual supermassive black hole binaries. To achieve these objectives, generating accurate and precise times of arrival of pulses from pulsar observations is crucial. Incorrect polarization calibration of the observed pulsar profiles may introduce errors in the measured times of arrival. Further, previous studies have demonstrated that robust polarization calibration of pulsar profiles can reduce noise in the pulsar timing data and improve timing solutions. In this paper, we investigate and compare the impact of different polarization calibration methods on pulsar timing precision using three distinct calibration techniques: the Ideal Feed Assumption (IFA), Measurement Equation Modeling (MEM), and Measurement Equation Template Matching (METM). Three NANOGrav pulsars—PSRs J1643−1224, J1744−1134, and J1909−3744—observed with the 800 MHz and 1.5 GHz receivers at the Green Bank Telescope (GBT) are utilized for our analysis. Our findings reveal that all three calibration methods enhance timing precision compared to scenarios where no polarization calibration is performed. Additionally, among the three calibration methods, the IFA approach generally provides the best results for timing analysis of pulsars observed with the GBT receiver system. We attribute the comparatively poorer performance of the MEM and METM methods to potential instabilities in the reference noise diode coupled to the receiver and temporal variations in the profile of the reference pulsar, respectively.more » « less
-
Abstract The development of solid‐state sodium‐ion batteries (SSSBs) heavily hinges on the development of an superionic Na+conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, this work exploits the structural variance between high‐ and low‐coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs). The halide HSEs incorporating a UCl3‐type high‐coordination framework and amorphous low‐coordination phase achieves the highest Na+conductivity (2.7 mS cm−1at room temperature, RT) among halide SSCs so far. By discerning the individual contribution of the crystalline bulk, amorphous region, and interface, this work unravels the synergistic ion conduction within halide HSEs and provides a comprehensive explanation of the amorphization effect. More importantly, the excellent deformability, high‐voltage stability, and expandability of HSEs enable effective SSSB integration. Using a cold‐pressed cathode electrode composite of uncoated Na0.85Mn0.5Ni0.4Fe0.1O2and HSEs, the SSSBs present stable cycle performance with a capacity retention of 91.0% after 100 cycles at 0.2 C.more » « less
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « less
-
Abstract We test the impact of an evolving supermassive black hole mass scaling relation (MBH–Mbulge) on the predictions for the gravitational-wave background (GWB). The observed GWB amplitude is 2–3 times higher than predicted by astrophysically informed models, which suggests the need to revise the assumptions in those models. We compare a semi-analytic model’s ability to reproduce the observed GWB spectrum with a static versus evolving-amplitudeMBH–Mbulgerelation. We additionally consider the influence of the choice of galaxy stellar mass function (GSMF) on the modeled GWB spectra. Our models are able to reproduce the GWB amplitude with either a large number density of massive galaxies or a positively evolvingMBH–Mbulgeamplitude (i.e., theMBH/Mbulgeratio was higher in the past). If we assume that theMBH–Mbulgeamplitude does not evolve, our models require a GSMF that implies an undetected population of massive galaxies (M⋆≥ 1011M⊙atz> 1). When theMBH–Mbulgeamplitude is allowed to evolve, we can model the GWB spectrum with all fiducial values and anMBH–Mbulgeamplitude that evolves asα(z) =α0(1 +z)1.04±0.5.more » « less
An official website of the United States government
